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Tests with binary outcomes (e.g., positive versus negative) to indicate a binary state of nature (e.g., disease agent 
present versus absent) are common. These tests are rarely perfect: chances of a false positive and a false negative 
always exist. Imperfect results cannot be directly used to infer the true state of the nature; information about the 
method’s uncertainty (i.e., the two error rates and our knowledge of the subject) must be properly accounted 
for before an imperfect result can be made informative. We discuss statistical methods for incorporating the 
uncertain information under two scenarios, based on the purpose of conducting a test: inference about the 
subject under test and inference about the population represented by test subjects. The results are applicable 
to almost all tests. The importance of properly interpreting results from imperfect tests is universal, although 
how to handle the uncertainty is inevitably case-specific. The statistical considerations not only will change the 
way we interpret test results, but also how we plan and carry out tests that are known to be imperfect. Using a 
numerical example, we illustrate the post-test steps necessary for making the imperfect test results meaningful.
1. Introduction

In both scientific research and routine daily decision-making, we de-

pend on results of various tests. Tests come in all forms and shapes. For 
example, doctors may test a patient’s blood for the presence of a disease 
marker, environmental engineers may test a sample of drinking water 
for the presence of cyanobacterial toxin microcystins and determine 
whether the concentration is above the public health safety threshold, 
ecologists may survey for invasive species, a geologist may drill a test 
well exploring for oil, a pollster may take an opinion poll to evaluate 
the viability of a political candidate, and so on. A unifying feature of 
these tests is that they are imperfect: the test result is likely correct but 
not always. In most cases, test results are reported to be or can be sim-

plified as either positive or negative. For example, a positive blood test 
indicates the existence of the disease marker and a positive opinion poll 
result indicates that the candidate is likely to win (with more than 50% 
popular support). A test result is imperfect because (1) most measured 
values are associated with inevitable measurement error and (2) a test 
is always based on measurements from a sample (e.g., a blood sam-

ple, a water sample, or a sample of 1,000 potential voters). A sample 
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can misrepresent the population. A water sample from a polluted wa-

ter source may contain no fecal coliform bacteria by chance, thereby 
leading to a false negative result. Likewise, a water sample from a clean 
water source may be contaminated unintentionally by researchers dur-

ing the sampling process or in the lab. The subsequent positive result 
is then classified as a false positive (i.e., the water source is incorrectly 
classified as “polluted”). Almost all tests used in scientific research are 
imperfect and, therefore, such sampling, measurement, and experimen-

tal errors are unavoidable. Given this imperfection of tests, we face a 
challenge when interpreting the test result: how can we use a poten-

tially incorrect result to draw inference or make a decision? Is a positive 
fecal coliform test result truly indicating that the water is polluted by 
domestic sewage, or is it a false positive? How we interpret the result 
will affect how we decide, for example, when to issue a public health 
warning for an affected recreational beach.

The imperfection of a test is routinely quantified with two error 
rates: the rate of a false positive (also known as a type I error) and the 
rate of a false negative (a type II error). Scientists in all fields recog-

nize the imperfection, and used various terms to describe the two types 
of errors. For example, in the early days of World War II, the US Army 
https://doi.org/10.1016/j.heliyon.2020.e03571

Received 17 March 2019; Received in revised form 8 July 2019; Accepted 9 March 2

2405-8440/© 2020 The Author(s). Published by Elsevier Ltd. This is an open a
censes/by-nc-nd/4.0/).
020

ccess article under the CC BY-NC-ND license (http://creativecommons.org/li-

https://doi.org/10.1016/j.heliyon.2020.e03571
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/heliyon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2020.e03571&domain=pdf
mailto:song.qian@utoledo.edu
https://doi.org/10.1016/j.heliyon.2020.e03571
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


S.S. Qian et al. Heliyon 6 (2020) e03571
developed the receiver operating characteristic (ROC) curve to iden-

tify the optimal threshold for determining whether a radar signal was 
from a Japanese aircraft. The two axes of the ROC curve are errors of 
omission (false negative) and commission (false positive). The decision 
threshold is selected to properly balance and minimize the two types of 
errors when interpreting a signal. When such uncertainty is unknown, 
decisions based on test results are often controversial. In 2014, the City 
of Toledo, Ohio faced such a decision when the measured microcystin 
concentration from one water sample exceeded Ohio’s drinking water 
safety standard of 1 𝜇g/L. Because the standard measurement method is 
highly variable [9], a measured concentration that exceeds the standard 
may not mean that the actual concentration is also above the stan-

dard. However, information about the measurement uncertainty was 
not available to the decision makers at the time and a “Do-Not-Drink” 
advisory was issued. When the subsequent tests of the same water sam-

ple returned below standard concentrations, the decision of advising 
Toledo residents not to drink their tap water became controversial.

For simplifying the discussion, we will define the following terms. 
First, we use present or absent to represent the state of the world we are 
trying to infer: a present indicates the presence of an agent of interest 
(e.g., microcystin concentration exceeding the standard, more than 50% 
popular support, an enemy aircraft, and so on) and an absent means the 
absence of the agent. When conducting a test, the test result is either 
positive (indicating the state of the world is likely present) or negative 
(likely absent). A false positive rate tells us how likely it is that a test 
would lead to a positive result when the true state of the world is absent 
and a false negative rate is the likelihood of a negative result when the 
true state of the world is present. When a test is carried out, we want 
to use the test result (either positive or negative) to infer the true state 
of the world. The imperfection of the test leads to uncertainty in the 
subsequent interpretation and inference. To make our discussion less 
abstract, we use a study of fungal disease in a Michigan rattlesnake 
population as an example.

2. Example: snake fungal disease in Michigan

Snake fungal disease (SFD), caused by the fungus Ophidiomyces 
ophiodiicola, is an emergent pathogen known to affect at least 30 snake 
species from 6 families in eastern North America and Europe [1, 6]. 
SFD was detected in eastern massasaugas (Sistrurus catenatus), a small, 
federally-threatened rattlesnake species, in Michigan in 2013 [10]. The 
estimated SFD prevalence ranges from 3-17% in three Michigan popu-

lations [5].

A commonly used method for detecting SFD is quantitative PCR 
(qPCR) to identify the fungal DNA using a skin swab. The method often 
leads to a false negative because swabbing can miss the disease agent. 
Hileman et al. [5] show that a single swab of an eastern massasauga 
with clinical signs of SFD (skin lesions) can often result in a false neg-

ative; a positive result (detecting fungal DNA on an individual snake) 
does not always indicate that the individual has SFD (false positive).

For the purpose of discussion, we used a sample of 20 snakes, 5 
which tested positive for SFD. As the effectiveness of using qPCR for 
testing SFD is still under study, we use optimistic hypothetical rates of 
false positive (5%) and false negative (3%).

3. Conditional probability and Bayes’ rule

Properly handling the uncertainty of the test result is the realm of 
probability and statistics. We use probability to quantify the uncertainty 
and use rules of probability to make inferences. Using the probability 
language to describe an imperfect test, the rate of a false positive is the 
probability of a positive test result when the underlying true state of the 
world is absent. Likewise, the rate of a false negative is the probability 
of a negative test result when the true state of the world is present. 
These two probabilities are examples of a conditional probability. To 
summarize the rules of conditional probabilities, we use “𝑝” to represent 
2

the state of the world being present, “𝑎” to represent absent (Fig. 1(i)), 
“+” to represent a positive test result, and “−” to represent a negative 
result (Fig. 1(ii)). A false positive probability is symbolized as Pr(+|𝑎), 
and a false negative probability is Pr(−|𝑝). These two conditional prob-

abilities characterize the quality of the test.

When a test is carried out, we observe either a “+” or a “−”. What we 
want to know is how likely the true state of the world is 𝑝 when observ-

ing a + and how likely the true state of the world is 𝑎 when observing a 
“−”. These are also conditional probabilities: Pr(𝑝|+) and Pr(𝑎|−). These 
two conditional probabilities are the basis for interpretation and infer-

ence of imperfect tests.

Bayes’ rule [2] connects these two groups of conditional probabili-

ties (Fig. 1(iii)):

Pr(𝑝|+) = Pr(𝑝) Pr(+|𝑝)
Pr(𝑝) Pr(+|𝑝) + Pr(𝑎) Pr(+|𝑎) (1)

and

Pr(𝑎|−) = Pr(𝑎) Pr(−|𝑎)
Pr(𝑎) Pr(−|𝑎) + Pr(𝑝) Pr(−|𝑝) (2)

Bayes’ rule has been used successfully in many fields. The popular book 
by Sharon McGrayne [8] documents many mesmerizing stories of Bayes’ 
rule from cracking the enigma code in World War II and hunting down 
Soviet submarines in the Cold War to settling the disputed authorship of 
federalist papers, nearly all these stories are related to binary decisions.

We will focus on equation (1). The test result is either positive or 
negative; consequently, Pr(+|𝑝) = 1 − Pr(−|𝑝). In addition, Pr(𝑎) = 1 −
Pr(𝑝). The Bayes’ rule (eq. (1)) suggests that in addition to the false 
positive and false negative probabilities we must also know Pr(𝑝) in 
order to calculate Pr(𝑝|+). In statistics, Pr(𝑝) is a marginal probability – 
the probability of the true state of the world being present regardless 
of the test result (or before we carried out the test). This probability 
can be interpreted as, for example, the prevalence of a disease in a 
population or our uncertainty with regard to the true state of the world 
before a test is carried out. For example, when testing snakes for a snake 
fungal disease, we can interpret Pr(𝑝) as the prevalence of the disease 
in the population. The Bayes’ rule suggests that Pr(𝑝) is necessary when 
interpreting the test result (see Box-A.).

4. The prior probability and statistical inference

A point of contention in using Bayes’ rule is the meaning of the 
prior probability Pr(𝑝). In Box-A., we interpreted the prior as the frac-

tion of individual snakes in the population that are infected with the 
fungal disease. When this fraction changes, the proportion of true pos-

itives (infected individuals among positive tests) also changes. When 
the prior has a clear physical meaning and can be measured, the use of 
Bayes’ rule is widely accepted [3]. When the prior is difficult to spec-

ify or the physical meaning is ambiguous, the use of a prior used to 
be controversial. Increasingly, we recognize that eliciting the prior is a 
means for proper use of relevant information in an analysis (Box-B.). 
Regardless of the meaning of the prior, the Bayes’ rule highlights the 
need of quantifying the prior Pr(𝑝) in order to properly interpret a test 
result; whether we call the quantity a prior, a marginal probability, or 
the prevalence is irrelevant. The proper interpretation of the test result 
and the use of the test result for inference requires a proper statistical 
treatment. As in all statistical applications, the first step is to represent 
the scientific hypothesis using a statistical model (with parameters). 
The proposed statistical model, in turn, will decide how we use data to 
estimate model parameters and how the model can be verified.

5. The purpose of a test

Understanding and defining the objective of a test is the key to de-

ciding what statistical model to use. When analyzing results from an 
imperfect test, there are at least two different objectives: (1) testing for 
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Fig. 1. A graphical depiction of an imperfect test. The true state of the world is either 𝑝 (present, the black circle) or 𝑎 (absent, the white space outside the 
circle) (i), and the test result is either + (the green circle) or − (the white space outside the circle) (ii). The imperfection of the test makes the interpretation of 
a test result contingent on information regarding the accuracy of the test and Pr(𝑝) (the non-overlapping portion of the green circle is the false positive rate and 
the non-overlapping portion of the black circle is the false negative rate) (iii). Changes in the relative size of 𝑝 and 𝑎 (iv) and/or Pr(𝑝) (v) will lead to a different 
interpretation of a test result (vi).
an individual subject, that is, to estimate Pr(𝑝|+) (e.g., whether a patient 
has a particular disease agent), and (2) testing to learn about a popu-

lation, that is, to estimate Pr(𝑝) (e.g., the prevalence of snake fungal 
disease in the rattlesnake population in Michigan).

5.1. Tests for individual subjects

When a doctor tests a patient for a disease, the objective is to de-

termine the likelihood that the patient has the disease. With known 
characteristics of the test (i.e., Pr(+|𝑎) and Pr(−|𝑝)) and the prevalence 
of the disease in the population, we can use Bayes’ rule to calculate the 
conditional probability Pr(𝑝|+) for a positive result. In this situation, a 
useful test will result in a Pr(𝑝|+) larger than a specific number (e.g., 0.5 
or a threshold selected as an optimal binary classifier based on an ROC 
curve). That is, a positive result should suggest that the patient is more 
likely to have the disease than not. Another way to express this condi-

tion is that the odds ratio should be larger than 1 (when the threshold 
is 0.5): Pr(𝑝|+)

1−Pr(𝑝|+) > 1. More generally, we can require that Pr(𝑝|+)
1−Pr(𝑝|+) > 𝛾

before we consider the test to be useful (e.g., prescribe treatment upon 
a positive result). Using Bayes’ rule, we can express this requirement 
in terms of the rates of false positive and false negative, as well as the 
prevalence.

Pr(+|𝑎) < 1 − 𝛾

𝛾

Pr(𝑝)
1 − Pr(𝑝)

(1 − Pr(−|𝑝)) (3)

In other words, a useful test must satisfy the inequality set by equa-

tion (3) (Fig. 2).

5.2. Tests for estimating population parameter(s)

In many cases, we test multiple individuals of a population in order 
to understand the characteristics of the population. In the snake exam-

ple, researchers are interested in estimating the prevalence of the fungal 
disease in the population. That is, we want to specify the prior 𝜃 = Pr(𝑝), 
a continuous variable, based on observed number of positives and neg-

atives. In statistical terms, we tested 𝑛 snakes and observed 𝑦 positives, 
3

Fig. 2. A graphical representation of (3): a test is represented by a dot in the 
graph and useful tests are those located below the respective lines.

from which we wish to estimate the prevalence 𝜃. We start the process 
by proposing a statistical model describing the data generating pro-

cess. In the case of analyzing test results, the data are the number of 
positive results from a total number of subjects. The statistical model 
describing the distribution of the data is the binomial distribution. The 
model is parameterized by a single parameter – the probability of ob-

serving a positive result. The quantity of interest is the probability of 
infection. How the parameter of interest and the binomial model pa-

rameter are linked depends on what we know (Box-C.). If the test is 
perfect, that is, we know the rates of false positive and false negative 
are both 0, we have a simple binomial-beta model and the parameter 
can be easily estimated. This model is often the first model in an in-

troductory Bayesian statistics textbook [7]. When the complexity of the 
data generation process increases, the simple model needs to be modi-

fied. If the test is imperfect and rates of false positive and false negative 
are known, the posterior distribution of 𝜃 cannot be represented by a 
commonly seen probability distribution. But the posterior distribution 
can be numerically evaluated and graphed for inference (Box-C. and 
D.). For example, suppose we tested 20 snakes for fungal disease and 5 
were positive. If the test has a false negative rate of 5% and a false pos-

itive rate of 2%, and our initial guess of the prevalence is 10% based on 
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Fig. 3. Numerically estimated probability density function of the posterior dis-

tribution of the population prevalence/prior (𝜃).

Fig. 4. A perspective plot of the numerically estimated joint distribution of the 
false positive probability (𝑓𝑝) and population prevalence/prior (𝜃).

a previous study of 20 snakes (our prior of the prevalence is a beta dis-

tribution with parameters 𝛼 = 2 and 𝛽 = 18), the posterior distribution 
is numerically estimated and shown in Fig. 3.

When one of the two error rates is unknown and needs to be es-

timated, we must specify a two-dimensional joint probability distribu-

tion. Computation is more intense, although we can still graphically 
display the joint distribution. If we are uncertain about the false positive 
probability in the case shown in Fig. 3, we can use a beta distribution 
to describe the uncertainty. For example, we may use a 𝑏𝑒𝑡𝑎(2, 100) to 
represent a false positive rate with mean about 0.02 and a standard 
ard deviation of 0.014 (a middle 95% range of 0.0024 and 0.054). The 
numerically estimated joint posterior distribution is shown in Fig. 4.

When both rates are unknown, the posterior distribution becomes 
a three-dimensional joint distribution, and we must resort to a mod-

ern Bayesian computation method to estimate the parameters and a 
numerical summary of these parameters to understand the distribution 
(Box-D.).

The steps of moving from the simplest binomial-beta model to the 
model simultaneously estimating three parameters are typical in statis-

tical learning. These steps should also be taken in applying statistics. 
When using imperfect tests, we need to understand why and how the 
test is imperfect and derive the appropriate model accordingly. Such a 
process is often tedious and iterative, a message we almost always miss 
when teaching or taking a statistics course.

6. Practical implications

Although our discussions were made with specific examples, the 
problem of an imperfect test is universal. How we interpret results from 
an imperfect test depends on how the data were collected and for what 
purpose. When individual test subjects are of concern, the uncertainty 
4

should be presented in terms of a conditional probability (i.e., Pr(𝑝|+)). 
The quality of the test is the key for proper interpretation of the test re-

sult. This is not just a problem of medical diagnostic tests. The statistical 
principle is the same in any situation where results from an imperfect 
test are applied to a specific subject.

When an imperfect test is used to infer a population parameter such 
as the prevalence of snake fungal disease in rattlesnake populations in 
Michigan, test results are raw data to be further processed to estimate 
the parameter of interest. The uncertainty associated with the imperfect 
test is represented by the posterior probability distribution. Depending 
on the nature of the test and the ease of determining the true status of a 
test subject, we have different computational needs. In other words, the 
proper use of an imperfect test requires us to fully consider all available 
information and properly structure the statistical analysis based on the 
objective of the study, just as the interpretation of the 𝑝-value from a 
null hypothesis test with low power [4] should be case-specific.

6.1. Summary – a guide to practitioners

Our discussion does not change how a practitioner conducts a test 
in most cases. Rather, we argued that the test result should be properly 
interpreted based on the quality of the test procedure, the objective of 
the test, and the state-of-the art understanding of the subject matter, 
and report the result accordingly (perhaps to avoid headline-catching, 
yet erroneous, statements). The knowledge of the two types of error will 
also help with better study design.

Test Target Individual subject Population

Test objective Estimating Pr(𝑝|+) Estimating Pr(𝑝)
(questions) Does the subject The disease prevalence

have the disease? in the population

Test result +/- +/- (multiple subjects)

Knowledge needed Pr(𝑝), Pr(+|𝑎), Pr(−|𝑝), and

to interpret test quality of the test an educated guess of

results Pr(+|𝑎), Pr(−|𝑝) Pr(𝑝)

Additional steps Bayes’ rule IBF if subject’s true

(beyond test state can be ascertained, or

results) Bayesian computation when

true state is infeasible

How can the test be improved testing ... and a better guess of

improved? method Pr(𝑝)

7. Text boxes

A. A simple explanation of Bayes’ rule

• Bayes’ rule is a rule about conditional probability. We use a sim-

ple numeric example to explain equation (1). In our example of 
using the qPCR method to detect SFD in a snake, the test is imper-

fect. Suppose that the false positive rate is 5% and the false neg-

ative rate is 3% (much improved over the current test). Suppose 
we also know, based on similar studies on the same snake species 
in the Midwest, the prevalence of the fungus is about 4%. In order 
to interpret a positive or negative test result, we use Bayes’ rule. 
We can explain Bayes’ rule as a straightforward account of the 
expected number of true positives and false positives. Assuming 
there are 10,000 snakes in this population, our prior knowledge 
suggests that about 400 snakes have the disease and 9,600 snakes 
do not. (We used an unrealistically large population number to 
avoid non-integer numbers.) With a false negative probability of 
3%, we expect to have 12 false negatives and 388 true positives. 
Likewise, among the 9,600 healthy snakes, a 5% false positive 
rate will result in 480 false positives. If we test all 10,000 snakes, 
we would expect about 868 positives, and only 388 of them are 
truly infected. For a randomly caught snake, a positive result 
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would suggest that the chance that the snake is truly infected is 
388/(388+480) or 0.447. In other words, a snake with a positive 
test result is (slightly) less likely to be infected with the disease 
than not infected. Bayes’ rule leads to the same result. The numer-

ator of Bayes’ rule is Pr(𝑝) Pr(+|𝑝), where Pr(𝑝) is the prevalence 
(4%), and Pr(+|𝑝) = 1 − Pr(−|𝑝) = 1 − 0.03 = 0.97. That is, the nu-

merator is 0.0388. We can easily verify that the denominator is 
0.0388 + 0.048. Multiplying the population number with both 
the numerator and denominator, we see that Bayes’ rule simply 
tallies the number of true positives and total positives.

• When the test is imperfect, we are uncertain about the result. 
The posterior probability Pr(𝑝|+), the probability of present after 
observing a positive result, is used to summarize the uncertainty 
we have on the result. The uncertainty, however, is a function 
of the prior and the two probabilities characterizing the perfor-

mance of the test. In the numerical example here, if the prior is 
1%, the posterior would be Pr(𝑝|+) = 0.164. This outcome is ex-

pected as the number of true positives is now a smaller fraction 
of the total number of positives (Fig. 1(iv)-(vi)).

B. The meaning of a prior

• Different people may have different prior probabilities for the 
same event. This is likely because they use different references. 
For example, when a doctor tests for a disease in a public health 
exhibition at a county fair, her prior should be the prevalence 
of the disease in the population because she would consider the 
test subject a random sample from the population. To the patient, 
the general population may not be a good reference because he 
knows more about himself. In this case, he knows which risk fac-

tors apply to him. As a result, the relevant population would be 
people with the same risk factors (e.g., smokers).

• The meaning of the prior to the patient and to the doctor may 
be the same (e.g., prevalence of the disease in a population). But 
deciding which population to use to form the prior requires more 
information. The supposedly subjective nature of a Bayesian prior 
is often criticized. We contend that a prior is simply a means 
for scientists to properly sort out the relevant facts/information 
using their knowledge of their study system. In this regard, when 
we define the prior probability as a degree of belief, we are really 
trying to make use of all our knowledge to ensure the outcome is 
most relevant.

• When we cannot confidently identify a sub-population for infer-

ence, we must step back to a larger population. The resulting 
prior is likely less relevant. As a result, the estimated posterior 
probability is less accurate. For example, in the numerical exam-

ple in Box-A., the posterior probability of present given a positive 
results is less than 0.5. But the test result puts the snake into a 
smaller population (the 388+480 would-be positive snakes). If 
we choose to conduct a follow-up test, our prior would be the 
posterior from the first test. This iterative process is an appealing 
characteristic of the Bayesian method for many applied scientists.

C. Bayesian inference

• Using Bayesian statistics to estimate an unknown variable con-

sists of three steps.

(a) Propose a statistical model that describes the data. This 
model includes the unknown variable as a parameter. For ex-

ample, the statistical model we use to estimate the prevalence 
of SFD in the Michigan rattlesnake population is a binomial 
model.

(b) Using the statistical model, we derive the likelihood func-

tion of the data – the likelihood of observing the data if the 
proposed model is correct. If the test is perfect, that is, both 
false positive and false negative rates are 0, the prevalence is 
the probability of observing a positive result. The statistical 
model of observing 𝑦 positive in 𝑛 snakes is

Pr(𝑦|𝜃) =(
𝑛
)
𝜃𝑦(1 − 𝜃)𝑛−𝑦 (4)
𝑦

5

This is the likelihood of observing the data if the prevalence 
is 𝜃. In classical statistics, the estimated parameter 𝜃̂ is the 
value that maximizes the likelihood.

(c) Specifying the posterior distribution of 𝜃 using the Bayes’ rule 
of a continuous variable:

𝜋(𝜃|𝑦) = 𝜋(𝜃) Pr(𝑦|𝜃)
∫
𝜃
𝜋(𝜃) Pr(𝑦|𝜃)𝑑𝜃 (5)

where 𝜋() represent a probability density function. 𝜋(𝜃) is 
the prior distribution, representing the uncertainty we have 
about 𝜃 and 𝜋(𝜃|𝑦) is the posterior distribution of 𝜃 after ob-

serving data.

• The derivation of posterior distribution parameters is often the 
difficult part of Bayesian inference because of the integral in the 
denominator. In some cases, the derivation can be simplified if 
we choose a suitable prior distribution. For example, when we 
choose a beta distribution as the prior for 𝜃, the prior density 
(with parameters 𝛼 and 𝛽) is 𝜋(𝜃) = Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽) 𝜃
𝛼−1(1 −𝜃)𝛽−1. This dis-

tribution has a mean of 𝛼∕(𝛼+ 𝛽) and variance of 𝛼𝛽∕((𝛼+ 𝛽)2(𝛼+
𝛽+1)). From the mean and variance formulae we can estimate the 
likely values of 𝛼 and 𝛽 based on what we know about the param-

eter. The posterior distribution of 𝜃 is estimated by multiply the 
prior distribution density function and the likelihood function. 
With some tedious algebraic maneuvering, we can often identify 
the posterior distribution as one of the standard probability dis-

tributions. For this case, the posterior distribution is

𝜋(𝜃|𝑦) =
Γ(𝛼)Γ(𝛽)
Γ(𝛼+𝛽) 𝜃

𝛼−1(1−𝜃)𝛽−1(𝑛
𝑦
)𝜃𝑦(1−𝜃)𝑛−𝑦

∫
𝜃

Γ(𝛼)Γ(𝛽)
Γ(𝛼+𝛽) 𝜃

𝛼−1(1−𝜃)𝛽−1(𝑛
𝑦
)𝜃𝑦(1−𝜃)𝑛−𝑦𝑑𝜃

∝ 𝜃𝑦+𝛼−1(1 − 𝜃)(𝑛−𝑦)+𝛽−1
(6)

It is the beta distribution with parameters 𝛼′ = 𝑦 + 𝛼 and 𝛽′ =
(𝑛 − 𝑦) + 𝛽. The mean of the posterior is 𝛼′

𝛼′+𝛽′ =
𝑦+𝛼

𝑛+𝛼+𝛽 . From this 
distribution, we can also calculate the credible interval to sum-

marize the uncertainty.

• When the test is imperfect and we know the rate of false positive 
(𝑓𝑝 = Pr(+|𝑎)) and rate of false negative (𝑓𝑛 = Pr(−|𝑝)), the model 
becomes more complicated because the probability of observing 
a positive result is now 𝜃⋆ = 𝜃(1 − 𝑓𝑛) + (1 − 𝜃)𝑓𝑝. The statistical 
model of the data is still the binomial distribution, but the prob-

ability of observing a positive result is now 𝜃⋆. As a result, the 
posterior distribution is:

𝜋(𝜃|𝑦) ∝ 𝜃𝛼−1(1 − 𝜃)𝛽−1×(
𝜃(1 − 𝑓𝑛) + (1 − 𝜃)𝑓𝑝

)𝑦 ×(
1 − 𝜃(1 − 𝑓𝑛) − (1 − 𝜃)𝑓𝑝

)𝑛−𝑦 (7)

This distribution is not one of the many probability distributions 
with a name (known characteristics). In other words, we cannot 
summarize the features of the distribution (e.g., mean, standard 
deviation) analytically, at least not easily.

D. Bayesian computation

• In Box-C. we derived two posterior distributions of the parame-

ter 𝜃. One is summarized by a standard probability distribution, 
of which we know how to derive needed statistics to summarize 
the uncertainty about the parameter. The other is an algebraic 
expression that cannot be represented by a known form of prob-

ability distribution. Because 𝜃 is the only unknown parameter (in 
(7)), we can graphically draw the posterior distribution on a two 
dimensional space. By numerically re-scaling the curve such that 
the area under the curve is 1, we have a graphical representa-

tion of the probability distribution (Fig. 3), from which we can 
draw inference about the parameter. Specifically, we evaluate the 
posterior density 𝜋(𝜃|𝑦) in equation (7) over a series values of 𝜃
(e.g., 1000 evenly spaced values between 0 and 1) and graph the 
results. We included an example using the snake fungal disease 
example in Additional information.
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• When one of the two error rates (e.g., the false positive rate 
𝑓𝑝) is unknown, the problem is to estimate the joint distribu-

tion (specified up to a normalizing constant) of the two unknown 
parameters. We can still use the same numerical approximation 
method and graphically present the posterior using a contour plot 
(Fig. 4). The same computational framework can be used if both 
error rates are unknown. But graphical display of the distribution 
is no longer feasible. Frequently, we use the modern Bayesian 
computational method based on Monte Carlo simulation for this 
type of problem. We included a detailed example in Additional 
information.
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